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Abstract 

The problem of rendering the origin an asymptotically stable equilibrium point of a nonlinear system 
while, at the same time, optimizing some measure of performance has been the object of much attention 
in the past few years. In contrast to the case of linear systems where several optimal synthesis techniques 
(such as ML, ^2. and ll) are well established, their nonlinear counterparts are just starting to emerge. 
Moreover, in most cases these tools lead to partial differential equations that are difficult to solve. In this 
chapter we propose a suboptimal regulator for nonlinear parameter varying, control affine systems based 
upon the combination of model predictive and control Lyapunov function techniques. The main result of 
the chapter shows that this controller is nearly optimal provided that a certain finite horizon problem can 
be solved on-line. Additional results include (a) sufficient conditions guaranteeing closed loop stability 
even in cases where there is not enough computational power available to solve this optimization on-line; 
and (b) an analysis of the suboptimality level of the proposed method. 

♦This work was supported in part by NSF grants ECS-9625920 and ECS-9907051 and AFOSR under grant F49620-00-1- 
0020. 



1    Introduction 

A large number of control problems involve designing a controller capable of rendering some point an 
asymptotically stable equilibrium point of a given time invariant system while, simultaneously, optimizing 
some performance index. In the case of linear dynamics this problem has been thoroughly explored during 
the past decade, leading to powerful formalisms such as /i-synthesis and f optimal control theory that have 
been successfully employed to solve some hard practical problems. 

In the case of nonlinear dynamics, popular design techniques include Jacobian linearization (JL) [14], 
feedback linearization (FL) [14], the use of control Lyapunov functions (CLF)[1,24] and recursive backstep- 
ping [14]. While these methods provide powerful tools for designing stabilizing controllers, performance 
of the resulting closed loop systems can vary widely, as we illustrate in the sequel with the problem of con- 
trolling a thrust vectored aircraft. A simplified planar model of the system is shown in Figure 1, with the 
corresponding dynamics given by (see [30, 7] for details): 
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where x, y and 0 denote horizontal, vertical and angular position respectively and where u\ and U2 = U2+mgl 

are the control inputs. 
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Figure 1: Simplified model of a thrust vectored aircraft 

Assume that the goal is to drive the system to the origin, while minimizing a performance index of the 
form 

J(x0,u)   =    [[ZQ^ + u'Ruldt, 

£(0)    =    [000    12.5    0    0] 

Q   =   diag[5    5    111    5],/? = /2x2 

corresponding to the following choice of state variables: £ = [x   y   6   x   y   0]. 

'Following [30] the control ui has been shifted to compensate for gravity. 

(2) 

(3) 

(4) 



method cost 

exact 1115 
CLF [7] 2.53 x 104 

JL + LQR [7] 1.1 XlO5 

Table 1: Comparison of different methods for the thrust vectored aircraft example 

Table 1 compares the performance achieved by several commonly used nonlinear control design meth- 
ods. As shown there, in this case the performance of the CLF and JL controllers is worse, by an order of 
magnitude, than the optimal cost (obtained by offline optimization using a conjugate gradient algorithm). 
Indeed, a recent workshop on nonlinear control [7] has shown that while the methods mentioned aboved can 
recover the optimal control under certain conditions, in general there are no guarantees on the performance 
of the resulting system. 

As an alternative, nonlinear counterparts of ^L [3, 11] and £l [15] have recently started to emerge. 
While these theories can guarantee optimality (at least in a certain sense), from a practical standpoint they 
suffer from the fact that they lead to Hamilton-Jacobi-Isaacs type partial-differential equations that are hard 
to solve, except in some restrictive, low-dimensional cases. 

Given these practical difficulties, during the past few years there has been an increased interest in ex- 
tending receding horizon (RH) techniques to nonlinear plants. These techniques are appealing since they 
allow for explicitly handling constraints and guarantee optimality in some sense. Moreover, since the opti- 
mization is carried only along the present trajectory of the system (i.e "locally") the resulting computational 
complexity is far less than that associated with finding the true global optimal control (a task that entails 
solving a Hamilton-Jacobi type equation). However, in contrast with the linear case (where global stability 
has been established [27, 23, 21]), for nonlinear plants only local stability results are available [17]. Sev- 
eral modified nonlinear RH formulations addressing this problem have been proposed, mostly based on the 
use of additional constraints or a terminal penalty. For instance, [18] uses dual control, where an explicit 
optimization is used to drive the system to a neighborhood of the origin, where a locally stabilizing linear 
control law is used. Magni [16] uses a terminal penalty obtained assuming that a linear control law will 
be used after the optimization horizon T. Finally, [20] achieves stability by enforcing an additional state 
constraint. However, while these approaches guarantee closed-loop stability, they may do so at the expense 
of performance. 

In this chapter we propose an alternative controller for suboptimal regulation of nonlinear, parameter 
varying, control affine systems, based upon the combination of receding horizon and control Lyapunov 
functions ideas. This approach follows in the spirit of a similar controller successfully used in the case of 
constrained linear systems [25, 26, 27], where receding horizon was used to drive the system to an invariant 
neighborhood of the origin where a stabilizing controller is available. In the first part of the chapter we show 
that combining these ideas with a suitable finite-horizon approximation of the performance index, leads to 
globally stabilizing, nearly optimal controllers, provided that enough computational power is available to 
solve on-line an optimization problem. In the second part of the chapter we show how to modify these 
controllers to guarantee global stability in the face of computational time constraints. Additional results 
include an analysis of the suboptimality of the proposed method and show that if an approximate solution to 
the problem is known in a set containing the origin, then our controller yields an extension of this solution 
with the same suboptimality level. Finally, we show that in the limit as the optimization horizon T ->• 0, the 



method reduces to the well known inverse optimal controller of Freeman and Kokotovic [8]. 

2   Preliminaries 

2.1    Notation and Definitions 

In the sequel we consider the following class of control-affine nonlinear parameter varying (NLPV) systems: 

* = f[x,P{t)] + g[x,p(t)]u (5) 

where x e Rn and u £ Rm represent the state and control variables, the vector fields./(.,.) and g{.,.) are 
known Cx functions, and where p 6 R"" denotes a vector of time-varying parameters, unknown a priori, but 
available to the controller in real time. Further, we will assume that at all times p(r) 6 <P C Rn", where fP is 
a given compact set, and that the set of admissible parameter trajectories is given by: 

%= {p 6 C\R,Rnp) ■ P(0 6 rP.V/ < P,(0 < viti= l,2,.../ip,Vr 6/?+} (6) 

where v,- and v,- are given numbers. 

Definition 1 A positive definite Cl function V : Rn xÄ-f R+ is a Control Lyapunov function (CLF)for the 
system (5) if it is radially unbounded in x and 

inf 
dV  ' 

LfV(x,p)+LgV(x,p)u+-^-p <-G(X)<0,        Vjc^Oandallpe % (7) 

where CT(.) is a positive definite function, and where LhV(x,p) = %h(x,p) denotes the Lie derivative ofV 
along h. 

2.2   The Quadratic Regulator Problem for NLPV Systems 

Consider the NLPV system (5). In the sequel we consider the following problem: Given an initial con- 
dition x0 and an initial value of the parameter p0, find a parameter dependent state-feedback control law 
u[x(t), p(t)] that minimizes the following performance index: 

oo 

J(x0,p0,u)=       sup [x'Q(x,p)x+u'R(x,p)u]dt,x(0)=xo (8) 
pe Jv,p(0)=po J 

where Q{.) and /?(.) are C\ positive definite matrices2. In the sequel, for simplicity, the explicit dependence 
of matrices on x and p will be omitted, when it is clear from the context. 

zThis condition can be relaxed to Q[x, p) > 0 



By using Pontryagin's principle it can be shown that solving this problem is equivalent to solving the 
following Hamilton-Jacobi-Bellman type partial differential equation: 

dV r      1 dV „r,-l jdV'.dV   ,   jr.v ,      „,„,,    V"P    dV 0   =   £/-i£**-Yg+$+yß*+  m«  ffigv,       subject to F(0,p) = 0 (9) 

If this equation admits a Cx nonnegative solution V, then the optimal control is given by u(x, p) = - 2^~ Vf£ 
and V(x, p) is the corresponding optimal cost (or storage function), i.e. 

oo 

V(x, p) = min sup / (xfQx+u'Ru) dt 

3   An Equivalent Finite Horizon Regulation Problem 

Unfortunately, the complexity of equation (9) prevents its solution, except in some very simple, low dimen- 
sional cases. To solve this difficulty, motivated by the work in [25, 28], in this section we introduce a finite 
horizon approximation to the nonlinear regulation problem. 

Lemma 1 Consider a compact set S containing the origin in its interior and assume that the optimal storage 
function V(x, p) is known for allx£S,p£ 'S. Let v = min^s minpe!P V(jt, p) where dS denotes the boundary 

ofS. Finally, define the set Sv= < x:suppe!P V(x,p) <v>. Consider the following two optimization problems: 

mm 
"   peJv 

mm 
"  peft 

sup      < J(x0, u, p0) = / [xfQx+u'Ru] dx \ (10) 
'v,P(0=Pe   *• ' > 

sup      \Mxo,u,po) = SWQx+u'Ru]dT + V[x(T),p(T)]\ (11) 
v.p(0=P» *• ' ■ J 

subject to (5) with x(t) = x0. Then an optimal solution of problem (11) is also optimal for (10) in the interval 
[t, T] provided that x(T) £ Sv. 

Proof: If x0 G Sv the proof follows immediately from the facts that, for all admissible parameter trajectories, 
Sv is positively invariant and that V(x,p) is the optimal return function there. If x0 g Sv, consider the 
following free terminal time problem: 

J°[x,p,t)   =   mmsup{v[x(tf),p(tf)] + f'f[x,Qx+u,Ru]dt} 

" peJv an subject to: KljL) 

x{tf)    6    Sv 

Let x°, u°, p° denote the optimal trajectory. It can be easily seen that the optimal return function satisfies: 

n    dJ    dJ ,,     .     187       , ,dj'     . ^ dJ 

at     dx 4dx dx v^v^v,:" 3p, 

with boundary condition J(x,p,t) = V(x,p) for x 6 Sv. Clearly this equation admits as solution J(x,p,t) = 
V(x,p). Thus problems (10) and (12) are equivalent. To establish the claim we will show that an optimal 



solution u° of (11) is also optimal for (12) (and thus (10)), provided that x°(T) e Sv. To this effect note that 
the Euler-Lagrange optimality conditions for problems (11) and (12) are identical, except for the additional 
transversality condition H[u°,^'(tf),X0(tf),}/}{tf)] = 0 that appears in the latter, where X(t) and/j(t) denote 
the co-states associated with the states and parameters, respectively. The boundary conditions for these 
co-states in problem (11) are given by 

^T) = ^W)^^0(T) = ^\X(TMT) (14) 

Since x(T) £ Sv it follows that x°(T),u0(T),X0(T),p°(T) satisfy the HJB equation (9), or equivalently 
//[M°Ijc£'(T,)1X

0(7')1//
,(r)] = 0. Thus, an optimal solution of (11) is also optimal for (12). 

This lemma shows that if a solution to the HJB equation (9) is known in a neighborhood of the origin, 
then it can be extended via an explicit finite horizon optimization, well suited for an on-line implementation. 
This suggests the following RH type control law: 

Algorithm 1 

0.- Data: The region Sv, the function V(x,p)for allx 6 Sv, a sampling interval 8T. 

l.-Ifx(t)eSv,u = -±R-lg(x,py^' 

2.- lfx(t) g" Sv then solve a sequence of optimization problems of the form (11) with increasing values of 
T until a solution such that x(T) 6 Sv is found. Use the corresponding control law u(t) in the interval 
[t,t + 8T]. 

From the results above it is clear that the resulting control law is globally optimal and thus globally stabiliz- 
ing. However, the computational complexity associated with finding V(x, p) (even only in the region Sv) may 
preclude the use of this control law in many practical cases. Thus, it is of interest to consider a control law 
where an approximation ^(x, p) (rather than V(x, p))is used. To this effect consider a compact set S contain- 
ing the origin in its interior and let W: S x fP ->/?+, *F G Cx {Rn* x Rnp, R) be a Control Lyapunov Function 
for system (5). Finally, let c = min^ minp€2> ¥(*, p) and define the set Sy C S = {x: maxpe!P W(x, p) < c}. 
Consider the modified control law: 

Algorithm 2 

0.- Data: a CLF x¥(x, p), the region Sy, a sampling interval $T, a positive definite function a(.). 

/.- Ifx(t)eSv, Wv(x,p) = argmin   sup   I\\u\\:^[f(x,p) + g(x,p)u] + lMvi < -o(x) < o) 
U V,<V,<V;   k J 

2.- Ifx g Sy then consider an increasing sequence T[. Let 

u*Tj - argmin {sup    / ' {x'Qx + u'Ru) dx + W [x (7J), p(7})]   > 



Denote by x*{.) the corresponding optimal trajectory and define?: 

J(x0,Po,Ti)   =    sup U? (x*'Qx* + u*'Ru*) dx + V[x* (7-),p(7J)] 
peJv L 

T(x,p0)   =   argminr {J(x,p0, 7}) :x*(Ti)eS^ for all p(.) e ?v, p{t) = pa} 

Then w?(x,p) = nfw(T), x <= [t,t + 8T]. 

(15) 

Theorem 1 Assume that Q(x, p) > GmI > 0. Then the control law uy generated by Algorithm 2 renders the 
origin a globally asymptotically stable equilibrium point of (5). 

Proof: Consider first an initial condition x0 g Sy, an initial value of the parameter p0, and the corresponding 
optimal control law «*(.) and trajectory x*(.). Let 

J(x0,p0)=      sup   'If (x*'Qx* + u*'Ru*)dz + x¥{x*[T(x0,p0)],p[T(x0,p0)]}\ 
p€fv-P(t)=Po  tJ< J 

and define x\ = x*(t + dt) (with dt > 0 small enough so that x*(t + dt) g Sy>) and pi = p(t + dt), where 
p(.) denotes any admissible parameter trajectory starting at p0. Since X*(T),T 6 [/ + <#, 7"] is also a feasible 
trajectory starting from x\ we have that: 

/(x,,Pl)    =   inf        sup        {f^(,l)(x'Qx+u'Ru)dx + W{x[T(xup1)},p{T(xupl)]}} 
" pe%-.p(t+dt)=Pl ^ J 

< sup        f^x
df

o) (x*'Qx* + u*'Ru*)dT + V{x*[T(x0,p0)],p[T(x0,p0)]} 
p&fv:p(t+dt)=pi 

sup    hn^Po) (x*'ßx*+„*'/?„*) jT+^{x*[7(x0)p0)],p[r(^,p0)]}} 
VP{t)=Po J 

< 
PGjv:p( 

-    ft'
+dt(x*'Qx* + u*'Ru*)d'Z = J(x0)-ft'

+d'(x*'Qx* + u*'Ru*)dz 

Thus, for any admissible parameter trajectory, 

=     yw+*).P('+*)]-^').PM] < I^ y(W() < _0m. M < o 

Since /(x, p) > 0 and J(x, p) < 0 for all x £ Sy, it follows that all trajectories reach the set 5V in finite time. 
Asymptotic stability now follows from the facts that Sy is invariant with respect to uy (i.e. trajectories 
starting in the set never leave it) and that ^¥(x, p) is a CLF there. 

4   A Modified Receding Horizon Controller 

In the last section we outlined a receding horizon type law, that under certain conditions globally stabilizes 
system (5). While most of these conditions are rather mild (essentially equivalent to the existence of a CLF), 

3From Lasalle-Yoshizawa's Theorem [14] we have that limr-^.x'Qjc = 0. Hence T(x0, p0) is finite. 



the requirement that T should be large enough so that x(T) 6 Sy could pose a problem, specially in cases 
where the system has fast dynamics. Thus, it is of interest to consider the following modified control law 
where both an approximation T(JC, p) (rather than V(x, p)) and a fixed horizon T are used: 

Algorithm 3 

0.- Data: a CLF ^{x), an invariant region S^> such that 0 6 int{Sy}, a horizon T. 

7.- Ifx{t)eSv, uv(x,p) = aigmm\\\u\\:   sup   Z./F+ £,¥« +2 jgv/ < _CT(X) < 0 1 
"     {      y,<v,<v, i   M' J 

2.- Ifx{t) ^SV then uy(x,p) = u{t) where u(k), X £ [t,t + T] isgivenby: 

( T+t 

u = aigmin sup < J (xfQx+u'RujdT + VlxiT + ^^iT + t)] (17) 

subject to: 

0   >   x(t + T)'Qx(t+ T) +min sup \v'Rv+d£ }-u'(t)Ru(t) (18) 

Note that inside the region SV, the control action is a generalization to the NLPV case of the pointwise- 
minimum norm controller proposed in [8]. Proceeding as in [10] it can be shown that if the CLF W has the 
same level sets as the optimal value function V inside Sy, then u^ is indeed the optimal solution for the 
original problem. Thus, the algorithm allows for "switching-off' the on-line optimization when inside a 
region where the optimal storage function (or a good approximation) is known. 

Theorem 2 The control law u«v generated by Algorithm 3 has the following properties: 

1. It renders the origin a globally asymptotically stable equilibrium point of (5). 

2. It coincides with the globally optimal control law when ^(x, p) = V(x, p), where V(x, p) denotes the 
optimal storage function obtained by solving (9). 

Proof: To prove stability, proceeding as in Theorem 1, consider first an initial condition x0 $. Sy. Denote by 
u*,x* the optimal control and associated trajectory respectively. Then 

C T+t+dt -\ 
J[x(t + dt),p(t + dt)]   =   minsup^    /    (x'Qx+u'Ru)dt + xi'[x(T + t + dt),p(T + t + dt)]} 

"     P   I t+dt J 

<    sup /  (x*'Qx* + u*'Ru*)dt + x¥[x*{T + t),p(T + t)] 
P t+dt nQs 

+   mmsup{x*'(T + t)Qx*(T + t) + VRv + W[x*{T + t),p]}dt K    } 

=   J[x(t),p{t)}-[x*{t)'Qx*{t) + u*'{t)Ru*{t)]dt 
+    minsup {x*1'(T + t)Qx*(T + t) + v'Rv + W[x*(T + t),p]} dt 



Therefore, if (18) holds then we have that, for all admissible parameter trajectories: 

j,toj)
JM+*M+w-*<f),m < _gnM, (20) 

where am denotes the minimum singular value of Q. Hence the trajectories starting outside Sy reach this set 
in a finite time. As in the proof of Theorem 1, once there, asymptotic stability is guaranteed by the parameter 
dependent control Lyapunov function x¥(x, p). 

To prove item 2.- note that if W(x, p) = V(x, p) then from the Hamilton Jacobi equation (9) we have that, 

xit + TYQxit + ^ + mmsuplv'Rv + W 1=0 (21) v  P I ('+nJ 

Thus the constraint (18) is redundant and the proof follows immediately from Lemma 1. 

Finally, before closing this section we consider a modified control law that takes into account the sample 
and hold nature of receding horizon implementations. 

Algorithm 4 

0.- Data: a CLFxi'(x), an invariant region Sy such that 0 £ int{Sy}, a horizon T, a sampling interval 
57. 

1.- lfx{t) G Sw, uy(x,p) = argmin \ \\u\\:   sup   L/F + Lg¥w + £gv,- < -o(x) < 0 i 
" { Vj<V/<V/ i      » J 

2.- lfx(t) gSy then uy(x,p) = u*{%), x G [t,t + 8T], where «*(.) is given by: 

u* = argmin sup \   f (xfQx+u'Rujdi + VlxiT + t),p(T + t)] \ (22) 

subject to: 

0   >   x{t+ T+ x)'Qx(t + T+ x)+min sup \u'{t + T + x)Ru(t + T + x)+x¥ )-u'(t)Ru(t) 

for all 0 < T < 5T 
(23) 

Lemma 2 The control law us renders the origin a globally stable equilibrium point of (5). Moreover, it 
coincides with the globally optimal control law when ^(x, p) = V(x, p) and 57 —>■ 0. 

Proof: The proof, omitted for space reasons, follows along the lines of the proof of Theorem 2. 



5   Selecting suitable CLFs 

In principle, any of the methods available in the literature for finding CLFs such as feedback linearization 
and backstepping (see for instance [9]) can be used to find the function ¥(.). Alternatively, if a stabilizing 
linear static feedback control law uk = Kx is known, then, following [16] a suitable CLF is given by: 

poo 
x¥{x,p) = sup /   x'(Q + K'RK)xdt 

However, as we show next, in some cases of practical interest, specific families of CLFs are readily available 
that reduce the degree of suboptimality incurred by the algorithm. 

5.1   Autonomous systems 

Consider the case of autonomous nonlinear systems, i.e. where / = f(x) and g = g(x) in (5). As we show 
in the sequel, in this case the suboptimality level incurred by the proposed algorithm is roughly similar to 
the difference between the CLF ¥(.,.) and the actual value function V(.,.). 

Theorem 3 Let x¥: Rn ->■ R+ be a positive definite, radially unbounded function and consider the following 
optimization problem: 

Jv(x,t) = min I   {x'Qx+u'Ru)dx+"¥[x{T)] (24) 

subject to (5). Then 

Mx,t) - V[x(t)] = V[x(T)] - V[x(T)] + 0 

where e(x,t) = Jy(x,t) - V(x) denotes the approximation error. 

.de 
+ 0{dt2) (25) 

Proof: By considering the Hamilton Jacobi equations for Jy and V it can be easily shown that e(t,x) satisfies 
the following equation: 

de     de f       1       , ,aAA     Ide       . ,de' 
°=^ + dx{f-28R   8Hx-)+4dx8R   8dx (26) 

By exploiting the fact that the optimal control law for (24) is given by 

UV---R-V— (27) 

equation (26) can be rewritten as: 

= i+!*+ii**-Y!' (28) 



From this last equation it follows that: 

<n = -4^-V^kr) (29) 

Expanding e(t) in a Taylor series around t = T yields: 

e(t)   =   e(T)+e{T)dt+0(dt2) 
=   <T)-^xgR-^'\x{T)dt + 0(dt2) 

(30) 

CoroUary 1 Assume that W is selected so that \\de[x(£>'T] \\ = 0. Then Jy(x,t) - V[x(t)] ^ *¥[x(T)] - V[x(T)] 
(to the first order in dt) along the trajectories of the system. 

The result above formalizes the intuitively appealing fact that in order to improve performance, the CLF 
W(x) should be selected "close" to V. Next we briefly discuss an approach to generate such functions. This 
approach is motivated by the empirically observed success of the State Dependent Riccati Equation (SDRE) 
method, briefly covered in the Appendix. 

From Lemma 4 in the Appendix, it follows that ^(x) = x!P{x)x, where P{x) denotes the solution to the 
SDRE, is a CLF in a neighborhood of the origin. Moreover, since the control law usdre is locally stabilizing, 
it can be easily shown that there exists T0 (possibly depending on the initial condition) such for all T > T0 

the constraints (18) are feasible. It follows that ^(x) = x'P{x)x is a suitable choice for the terminal penalty. 
Moreover from the properties of the SDRE method (see the Appendix) it follows that with this choice, the 
control law satisfies all the necessary conditions for optimality as 0[||;c(f+ r)||2]. Thus, we will expect 
that Algorithm 3 using T(x) = x'P{x)x will generate a nearly optimal control law, even when T is relatively 
small. In section 8 we will show that this is indeed the case with two examples. 

5.2   Linear Parameter Varying Systems 

Consider now the case where the dynamics (5) are linear in the state, i.e. 

x = A[p(t)]x+B[p(t)]u 

This is case of LPV systems, that has been the object of much attention in the past few years [31], as a 
vehicle to formalize the concept of gain scheduling. In this case it can be shown that a parameter dependent 
state feedback controller with guaranteed performance can be synthesized by solving the following convex 
optimization problem (see [2] for details): 

min   TraceZ (31) 
X(p)>0,Z 
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subject to: 

' t=x YjrS^ +A(p)X(p)+X(p)A'(p) -B(p)R-lB'(p)    X(p) 
*(P) -Q J 

2£i v/^f1 + A(p)x(P) +X(PM'(P) - Ä(p)ir'fi'(p)   x(p) 

z      / 
/ X(p) >0 

*(P) -Ö 

<0 

<0 

for all p 6 IP. The corresponding control action is given by 

1 
u=--R-lB'(p)X-\p)x 

and the corresponding cost is bounded by: 

oo 

J{x0,Po)= sup / {x'Qx+u'Rujdt <^0X~\p0)x0 
pe5v 

(32) 

(33) 

(34) 

While this approach yields a stabilizing controller with guaranteed performance bounds, it is potentially 
conservative due to the facts that (i) it uses a quadratic parameter dependent Lyapunov function (x'X~l(p)x), 
and (ii) allows for all possible combinations of the parameters and their derivatives. In the sequel, we 
indicate how performance can be improved by exploiting the Receding Horizon ideas presented in this 
chapter. 

Lemma 3 Consider the case of LPV dynamics. If the terminal penalty W in Algorithm 3 is chosen as 
^(xjp) = x'X~l(p)x, where X denotes any feasible solution to the set of affine matrix inequalities (AMIs) 
(32) then the following holds: 

1. The resulting control law Uy(x, p) is globally stabilizing for any choice of the horizon T. 

2. For any admissible parameter trajectory p we have that: 

7v(x0,p) = /   x'Qx+u'Rudt <x(0)'X-l(po)x(0) 
JO 

(35) 

i.e. the proposed control law is guaranteed to perform no worse than the AMI based control law (33), 
in the sense that both have the same worse-case upper bound. 

Proof: To establish the first claim, note that from the Euler Lagrange conditions for optimality, it can be 
easily shown that in this case the constraint (18) is redundant, since it is satisfied by the control that optimizes 
the performance index (17). Stability follows now from Theorem 2. 

To complete the proof, letXAMiMAMhX^ and HV denote the trajectory and control corresponding to the 
parameter trajectory p, obtained when using the AMI-based (33) and proposed control law respectively. 
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Then, from the definition of HV it follows that: 

JZ,(tfvQxy+u'}fRuv)dt  <  /or(^Vötl),+M;/?MV)^+jfv(r)/x-1[p(r)]xv(r) 

r (36) 
^     So  KMl&AMl + UA^RuAM^dt+XAMliTyX-^piT^AM, 

From Schur complements, the set of inequalities (32) is equivalent to 

- 2^+MP(t)]X(p)+X(p)A[p(t)]' + X(p)QX(p)-BR-lB' < 0 (37) 

for all y, < V; < v,- or, equivalently, 

"p    fix 
^JJvi^-+AclX+X^l+XQX + BR-xB' <0 (38) 

where Ac!(p) = A[p(t)]- ±B[p(t)]R~]B[p(t)]'X(p) denotes the closed-loop dynamic matrix. Pre and post- 
multiplying this last equation byx^X-1 and X~

1
XAMI yields (after some algebra): 

-fa (
X

'AMI
X

~ 
X

AMI) +X'AMIQ
X
AMI+U'AMI

RU
AMI < 0 (39) 

Finally, integrating this last inequality yields 

/   {X'AMIQXAMI WAMIRUAMI) dt +XAMI{T)'X-
X
[P{T)^AMI < x{0)'X-\po)x(0) (40) 

which, combined with (36) yields the desired result. 

6    Connections with other approaches 

In this 'section we briefly explore the connections between the proposed controller and some related ap- 
proached proposed in the past. 

The basic idea of Algorithm 1, namely (i) to convert the infinite dimensional quadratic regulation prob- 
lem to a finite dimensional optimization by using a penalty function to estimate the cost-to-go, and (ii) 
to use explicit optimization to drive the system to an invariant neighborhood of the origin and then switch 
controllers was proposed in [25, 26] for the case of constrained LTI systems (see also [5, 22] for later work 
along these lines). 

The combination of dual mode control and receding horizon for stabilizing nonlinear systems was pro- 
posed in [18]. However, while this approach has the ability to robustly stabilize a nonlinear plant, does not 
address the issue of performance. Indeed, the performance index used there (and hence the control action) 
does not approach the optimal unless T -* °°. From a practical stand-point, this implies that in order to 
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achieve acceptable performance, the on-line optimization must be performed over a large horizon, which 
may not be feasible for moderately large plants or plants with fast time constants. 

The extension of the techniques proposed in [25] to nonlinear plants was pursued in [16]. Here the 
infinite horizon cost is approximated by an expression of the form (11), where the terminal penalty function 
is obtained assuming that a stabilizing control law of the form u = -Kx is available and will be used after the 
horizon T. Alternatively, the penalty function can be obtained by solving the Ricatti equation corresponding 
to the linearization of the dynamics around the equilibrium point x = 0 (see also [4]). Thus, this approach 
can be viewed as a special case of Algorithm 1 for a particular choice of (local) CLF. 

The combination of Receding Horizon and CLF techniques has been proposed independently in [28,29] 
and [20]. A different between these approaches is that the latter does not include a terminal penalty in the 
performance index. Rather, [20] optimizes a performance index of the form: 

J=   f [xfQx+u'Ruldi (41) 

subject to 
LfV(x) + LgV(x)u    <    -eo(x) 

V[x(t + T)]    <    V[xa(t + T)] ^l) 

where V(.) is a CLF and xa is the trajectory corresponding to the pointwise minimum norm control that 
renders V < 0. This approach is guaranteed to stabilize the system for any horizon T such that the constraints 
(42) are feasible. However, it may do so at the expense of performance. Note that contrary to (11), (41) 
does not approximate the original cost, even if T is taken large or V coincides with the actual value function 
for the problem. Thus, the corresponding control action, while stabilizing, is not necessarily close to the 
optimal. 

Finally, we close this section by showing that in the limit as T —» 0, the control law obtained from 
Algorithm 3 reduces to the inverse optimal controller proposed by Freeman and Kokotovic [8]. To this 
effect, note that if T —>• 0 in (17) then u^ is given by the solution to the following optimization problem: 

subject to: 

where: 

uy = argmin { u'Ru + LgWu } (43) 
u 

\|/O + \(/1M = 0 (44) 

Vo   =   LfW[x{t)]+x(t)'Qx(t)+   sup    i$öi + a[x(t)] 
y,<p,<v,i=i (4o) 

V,    =   LgV[x(t)] 

and where -OC(JC) is the desired negativity margin [8]. The solution to this optimization problem is given by: 

uv = „ ,   , (46) 

This is precisely the inverse optimal controller obtained in [8] 
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7    Incorporating constraints 

Next, we briefly discuss how to incorporate constraints into the formalism, proceeding in the spirit of [25, 
27]. 

Assume for instance that the control action is constrained to belong to a given compact, convex, possibly 
parameter dependent set u 6 Zl(p). Let Vu denote the unconstrained value function for the problem in a 

region 5, and consider the set lly = \x:u = -\g'^ £ 1l(p) for all p 6 (p\, i.e. the set of states where 
the unconstrained control law satisfies the control constraints. Finally, denote by Sy the largest invariant 
set contained in lly. Then, Algorithm 1 can be applied to the problem by simply modifying the explicit 
optimization (11) to take the constraints into account and using the set Sy as Sv. Clearly, this modified 
control law has the same properties as Algorithm 1, i.e. if the optimization is feasible, then it stabilizes 
the system and yields the optimal control action. Similarly, the use of a fixed optimization horizon T and 
an approximation ¥(*, p) can'be taken into account by selecting W to be a constrained control Lyapunov 
function in the sense that: 

3-[/(-*, P) + g(x, p)n] + X ä-v,- > < -O||JC||
2
 < 0; Vx e Sv (47) dx y dp,    J 

and modifying the algorithm so that the minimization is taken over u £ 1Z(p) rather than over R"u. Clearly, 
this algorithm stabilizes the system in the region where this can be accomplished with bounded controls. 
Finally, state constraints can also be incorporated into the formalism by rendering suitable sets invariant, 
proceeding as in [27]. 

8    Illustrative Examples 

This section illustrates our results with several examples. The first one is a simple academic example that can 
be solved analytically. Thus it can be used to explicitly analyze the source of performance degradation when 
using feedback linearization or the SDRE method, and to show, the advantages of the proposed approach. 
The second example, a realistic problem arising in the context of control of thrust vectored aircrafts, was 
used for benchmarking several nonlinear design methods in [7]. Finally, the third example illustrates the 
advantages of the proposed method for the case of LPV systems. 

Example 1: Consider the following regulation problem: 

xl + u 2dt (48) 

subject to 
x\    =   x2 

It can be shown that the optimal control law is given by: 

x2   =    -xie
Xl + ^4 + eXlu (49) 

u0pt = -X2 (50) 
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Time (sec.) Time (sec.) 

Figure 2: State trajectories for example 1 

Optimal ; 

Time (sec.} Time (sac.) 
10 12 

Figure 3: Control effort and cost for example 1 

with the corresponding optimal storage function: 

V(x)=x2
l+4e~Xi ■ (51) 

A feedback linearization design selected so that the closed-loop system has the same storage function as 
||x|| ->• 0 yields the following controller and Lyapunov function: 

uFL   =    (1 - e~Xl )xi - x2e~Xl (1 + 0.5 * x2) 
VFL   =   x\+x\ 

(52) 

Note that UFL — uopt only for small values of x\ and x2.   Consider now the following state-dependent 
coefficient (SDC) parametrization: 

0        1 
;    B. 

0 
e*1 

It can be shown that the solution to the corresponding SDRE is given by: 

(53) 

P{x) 
eXl    0 
0     1 

p(x) (54) 
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where 

with associated control action: 

p(x) = 
X2 

2e* -^f^M v-Xl 

"sdre = -*2 m+fJ&i 
Finally, it can also be shown that 

x'P(x)x = peXlV(x) 

Thus x!P{x)x gives a good estimate of V(x) and usdre = uopt only when (^pj-) < 1. 

(55) 

(56) 

(57) 

Table 2 shows the different costs starting from the initial condition *(0) = [-2 2] for several con- 
trollers, with the corresponding trajectories shown in Figures 2 and 3. The last two entries of the table 
correspond to the the proposed controller using an horizon T =\sec and as estimates of the value function 
^ = VfL and *F = x'P{x)x respectively. Note that in this case performance of both controllers is virtually 
identical to optimal. 

method cost 

optimal 33.56 
FL 95.11 

SDRE 143.0 
RH+FL 34.24 

RH+SDRE 33.7 

Table 2: Comparison of different methods for Example 1 

Example 2: Consider again the simplified model of the thrust vectored aircraft used in the introduction. 
Table 3 shows the cost corresponding to the initial condition £(0) = [000 12.5 0 0], obtained 
using different controllers. The two lowest entries correspond to the proposed method using T — Isec and 
Ts = 0.5sec and terminal penalties derived from Jacobian Linearization and the SDRE methods respectively. 
Note that the latter virtually achieves optimal performance, while the former is only 2% suboptimal. This 
behavior can be explained by looking at Figure 4 that shows the different portions of the cost as a function 
of the horizon, starting from the initial condition £(0). These plots show that while *F(;c) = x'P(x)x gives 
initially a very poor estimate of the cost-to-go, the combination of W(x) and the explicit integral in (17) 
give a very good estimate if T is chosen > Isec. It is worth mentioning that a conventional receding horizon 
controller (i.e. one obtained by setting ¥ = 0 in (17)) with the same choice of horizon and sampling time 
fails to stabilize the system. 

Example 3: Consider an LPV system with the following state space realization: 

"0 1 
1    0.5p-1.5 

Ci   =   y/2 
1    -1 
0     0 

,B2 = [0    1]', 

012 = [0    1]' 
(58) 

$   =   {p:0<P< 1}; Y=-2,v = 2 
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method cost 

exact 1115 
LQR [7] 1.1 xlO5 

CLF [7] 2.53 x 104 

LPV [7] 1833 
SDRE 1640 
RH+JL 1142(T=1) 

1321 (T=0.4) 
RH+SDRE 1117 (T=l) 

1310 (T=0.4) 

Table 3: Comparison of different methods for Example 2 

Dfan: x(0)=[0 0 0 12.5 0 0], Th=1, Ts=0.5 

,8   600 

Figure 4: The terms of the cost as function of the horizon 

It can be easily verified that the following matrix function satisfies the AMIs (32): 

X(p)   =   X0 + XlP + X2p
2 

X0    = 

X2   = 

0.2210 
-0.3505 

-0.3505 
1.1272 

Xi = 
-0.0239     0.0924 
0.0924     -0.3577 (59) 

0.0243     -0.0683 
-0.0683     0.2180 

for all p G %■ Figure 54 compares the trajectories starting from the initial condition [0 2]' for the AMI- 
based (xUpv,X2ipV, utpv) and the proposed controller respectively. The latter was implemented using T = 2 as 
horizon and W = x'X'' (p)x. For the specific parameter history shown there, the receding horizon controller 
yields J = 6.91 versus J = 8.30 for the control law (33), a performance improvement of roughly 20%. 
Similar results were obtained for other initial conditions and parameter trajectories. 

4In this figure the parameter was normalized to p„ = 0.5 * p - 1.5. 
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Figure 5: state, control and (normalized) parameter trajectories for the Example 

9   Conclusions 

In contrast with the case of linear plants, tools for simultaneously addressing performance and stability of 
nonlinear systems have emerged relatively recently. Recent counterexamples [7] illustrated the fact that 
while several commonly used techniques can successfully stabilize nonlinear systems, the resulting closed- 
loop performance varies widely. Moreover, these performance differences are problem dependent, with 
performance of a given method ranging from (near) optimal to very poor. 

In this chapter we have proposed a new suboptimal regulator for control affine parameter dependent non- 
linear systems, based upon the combination of receding horizon and control Lyapunov functions techniques. 
The main result of the chapter shows that under certain relatively mild conditions, essentially equivalent to 
the existence of a Control Lyapunov Function, this regulator renders the origin a globally asymptotically 
stable equilibrium point. Additional results show that for some readily available choices for the CLF y(x, p) 
render the proposed controller near optimal for some cases of practical interest. These results were illus- 
trated with a number of examples, where the proposed controller outperformed several other commonly 
used techniques. 

An issue that was not addressed here is that of the computational complexity associated with solving 
the nonlinear optimization problem (17). Following [7] this complexity could be reduced by exploiting 
differential flatness to perform the optimization in flat space. Additional research being pursued includes 
the extension of the framework to the output feedback case and to handle model uncertainty. 
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A    The SDRE approach to nonlinear regulation 

In this section we briefly cover the details of the SDRE approach developed by Cloutier and coworkers 
[6, 19]. The main idea of the method is to recast the the nonlinear system (5) into a State Dependent 
Coefficient (SCD) linear-like form: 

x = A(x)x+B{x)u (60) 
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and to solve pointwise along the trajectory the corresponding algebraic Riccati equation: 

A'(x)P(x) + P{x)A{x) - P(x)B(x)R-\x)B'(x)P(x) + Q{x) = 0 (61) 

The suboptimal control law is given by usdre = -jR~l(x)B'P(x)x where P(x) is the positive definite (point- 
wise stabilizing) solution of (61). In the sequel we briefly review the properties of this control law. The 
corresponding proofs can be found in the appropriate references. 

Lemma 4 ([6,19]) Assume that Q{x) = C'(x)C{x) and that there exists a neighborhood Q. of the origin 
where the pairs {A (x), B(x)} and {A (x), C(x)} are pointwise stabilizable and detectable respectively and all 
the matrix functions involved are Cx- Then the control law usc{re renders the origin a locally asymptotically 
stable equilibrium point of the closed-loop system. 

Lemma 5 ([6,19]) The SDRE control law and its associated state and co-state trajectories satisfy the 
following necessary condition for optimality: ^ = 0 where H — x!Q(x)x+u'R(x)u + X! [f(x) +B(x)u] is 
the Hamiltonian of the system and where X denotes the co-states, 

Lemma 6 ([6,19]) Assume that the parametrization (60) is stabilizable and all the matrices involved along 
with their gradients are bounded in a neighborhood Q of the origin. Then the SDRE control law and its 
associated state and co-state trajectories asymptotically satisfy at a quadratic rate5 following necessary 
condition for optimality: X= — ^ in the sense that 

\\k+^\\<jifux 

for some constant matrix U > 0 and all x£ Q.. 

Lemma 7 ([12]) Let P{x) denote a solution to the SDRE (61). If there exists a positive definite junction 
V(x) such that -^p- = P(x)x then usdre is the globally optimal control law6. 

5i.e. p+f!-||-»0asO(||;c||2)as;c->0. 
6A necessary and sufficient condition for this to hold is that the Jacobian matrix Jj [Pf*)*] is symmetric (see for instance [13], 

section 3.1). In this case V(x) can be computed as V(x) = Jgy'P{y) • dy, where this line integral is independent of the path. 
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